Controlling higher-power loads

Could be higher voltage load, or higher current (than the SoC or $\mu \mathrm{C}$ can supply) or both
A NPN bipolar junction transistor (BJT) in a common emitter configuration (off or saturation) works well up to maybe even a few tens of W. A BJT, like an LED, requires a Current I i mi ti ngresi stor. The resistor also protects the SoC or $\mu \mathrm{C}$ in case the BJT shorts out from collectorto base. (The +Vload supply will not be shorted directly to the pin.)

An enhancement-mode n-channel M OSFET in a common source configuration (off or triode) often works better than a BJT of equal cost will in today's technology. Since a M OSFET has no source current, the current-limiting resistor may be omitted, but it is often left in the circuit to protect the SOC or $\mu \mathrm{C}$ in case the MOSFET shorts.

The negative side of the load is typically the switched terminal.
This way a low voltage such as $V_{O H}=3.3 \mathrm{~V}$ can control a higher voltage load.

$$
R=\frac{V_{O H}-0.7 \mathrm{~V}}{2 \mathrm{~mA}}=\frac{3.3 \mathrm{~V}-0.7 \mathrm{~V}}{2 \mathrm{~mA}}=1.3 \mathrm{k} \Omega
$$

1

Transistors, when used as switches-two popular types, Field Effect and Bipolar. THIS PAGE, FET

Field Effect Transistor (FET, M OSFET)
Discussed here: n-channel enhancement type FETs The key specificationfor switching applicationsis the Transistor'sthreshold voltage, V_{t}.

If $v_{g s}>V_{t}$ the transistor conducts current. (is "ON")
Typically you need a half-volt or a volt more than V_{t} for to make the transistor act like a nearly zero ohm resistance. For the purposes of this class, say that we require
or

$$
v_{g s}>V_{t}+(1 \mathrm{~V})
$$

$$
v_{g s}<V_{t} \quad \text { "OFF" }
$$

Typically $0.4 \mathrm{~V}<V_{t}<3 \mathrm{~V}$ for devices used as switches.

Types of switching devices and relative advantages
M etal-Oxide Semiconductor Field Effect Transistor, aka M OSFET
aka "field-effect transistor"
--Switching action is from drain to source
--Gate controls on-off action. If there is enough Gate voltage, it is on.
--Source is usually grounded (n-channel shown) or connected to +Vcc (p-channel, not shown).
--Gate can be directly wired to the uC, no resistor needed.
--Has a residual resistance when on, typically a fraction of an ohm.
--Can be connected in parallel to handle more current and in series to handle more voltage.
--No ground isolation. Load and uC must share same ground.
--Very cost competitive with BJT's for many applications with loads of less than hundreds of kW.
--Gate is somewhat sensitive to static zap. Usually it must be protected.
--Has grabbed the market share for most "middle of the road" needs.

Physically, a M OSFET comes in the same package styles as a BJT.

3

Transistors, when used as switches-two popular types, Field Effect and Bipolar. THISPAGE, BJT

Bipolar Junction Transistor (BJT) Discussed here: npn type BJTs The key specification for switching applications is the transistor's forward current gain, β.

If $i_{b}>i_{c} / \beta$ the transistor conducts current. (is "ON")
Typically you need about 20% to 50% more to make the transistor act like a nearly zero ohm resistance. For the purposes of this class, say that we require

$$
i_{b} \simeq 1.3 i_{c} / \beta \quad \text { "ON" }
$$

or

$$
i_{b}=0 \quad \text { "OFF" }
$$

Typically $50<\beta<200$ for devices used as switches.
Typically $v_{B E}=0.7$ Vif $i_{B}>0$

Types of switching devices and relative advantages

Bipolar junction transistor,
aka BJT
aka "transistor"
--Switching action is from collector to emitter
--Base controls on-off action. If there is base current, it is on.
Note: it is controlled by current
--Emitter is usually grounded (NPN shown) or connected to +Vcc (PNP, not shown).
--Must use a resistor between uC and base
--Amplifies available drive current, typically by about 10 to 5000 e.g. $x 100$, from 0.5 mA to 50 mA .
--Some very high-power models are available as "insulated gate bipolar transistors" (IGBT) e.g. $>1000 \mathrm{~V}$ when "off" and >2000 A when "on." IGBTs are actually hybrid devices that are partly a M OSFET and partly a BJT.

--In some applications (usually very high current) BJTs waste less power than other switching devices.
--No ground isolation. Load and uC must share same ground.

10 mm

--Relatively robust against static zap, momentary overload.
--Relatively inexpensive for very low and very high-power loads

Controlling higher-power loads

Example: Control a $14.4 \mathrm{~V}, 2.88 \mathrm{~W}$ incandescent lamp with a parallel port output pin.
$\mathrm{I} / 0$ pin has $V_{\text {OHmin }}=3.0 \mathrm{~V}$ and $V_{\text {OLmax }}=0.3 \mathrm{~V}$ and $\left|I_{\max }\right| \leq 2 \mathrm{~mA}$
The lamp will require $\frac{2.88 \mathrm{~W}}{14.4 \mathrm{~V}}=0.2 \mathrm{~A}$ of current
For this example I choose a BJT as the switching element to be controlled by the μC.

Controlling higher-power loads

Example: Control a $14.4 \mathrm{~V}, 2.88 \mathrm{~W}$ incandescent lamp with a parallel port output pin.
I / O pin has $V_{\text {OHmin }}=3.0 \mathrm{~V}$ and $V_{\text {OLmax }}=0.3 \mathrm{~V}$ and $\left|I_{\max }\right| \leq 2 \mathrm{~mA}$
The lamp will require $\frac{2.88 \mathrm{~W}}{14.4 \mathrm{~V}}=0.2 \mathrm{~A}$ of current
For this example I choose a BJT as the switchingelement to be controlled by the μC.
I assume $V_{B E}=0.7$ Vif the transistor is turned on.

I/O Pin

Controlling higher-power loads

Example: Control a $14.4 \mathrm{~V}, 2.88 \mathrm{~W}$ incandescent lamp with a parallel port output.
I/O pin has $V_{\text {OHmin }}=3.0 \mathrm{~V}$ and $V_{\text {OLmax }}=0.3 \mathrm{~V}$
The lamp will require $\frac{2.88 \mathrm{~W}}{14.4 \mathrm{~V}}=0.2 \mathrm{~A}$ of current
Select a transistor with a current gain, β of at least 150 .

Calculate the needed base drive current, assume $V_{B E}=0.7 \mathrm{~V}$
1/O Pin
$i_{B}=1.3\left(\frac{i_{C}}{\beta}\right)=1.3 \frac{200 \mathrm{~mA}}{150}=1.733 \mathrm{~mA}$
(Note: This will be a near maximum load for the R-pi.) \square
The voltage drop across the resistor will be $V_{\text {OHmin }}-v_{B}=3.0-0.7=2.3 \mathrm{~V}$
$R=\frac{2.3 \mathrm{~V}}{1.733 \mathrm{~mA}}=1.3 \mathrm{k} \Omega$
(black, orange, red, gold)

Controlling higher-power loads

Example: Control a $14.4 \mathrm{~V}, 2.88 \mathrm{~W}$ incandescent lamp with a parallel port output.
I / O pin has $V_{\text {OHmin }}=3.0 \mathrm{~V}$ and $V_{\text {OLmax }}=0.3 \mathrm{~V}$
The lamp will require $\frac{2.88 \mathrm{~W}}{14.4 \mathrm{~V}}=0.2 \mathrm{~A}$ of current
Select a transistor with a current gain, β of at least 150 .
Calculate the needed base drive current, assume $V_{B E}=0.7 \mathrm{~V}$
I/O Pin
$i_{B}=\left(\frac{i_{C}}{\beta}\right)=1.3 \frac{200 \mathrm{~mA}}{150}=1.733 \mathrm{~mA}$
(Note: This will be a near maximum load for the R-pi.)
The voltage drop across the resistor will be $V_{\text {OHmin }}-v_{B}=3.0-0.7=2.3 \mathrm{~V}$

$$
R=\frac{2.3 \mathrm{~V}}{1.733 \mathrm{~mA}}=1.3 \mathrm{k} \Omega
$$

(black, orange, red, gold)

Controlling higher-power loads

Example: Control a $14.4 \mathrm{~V}, 2.88 \mathrm{~W}$ incandescent lamp with a parallel port output.
I / O pin has $V_{\text {OHmin }}=3.0 \mathrm{~V}$ and $V_{\text {OLmax }}=0.3 \mathrm{~V}$
The lamp will require $\frac{2.88 \mathrm{~W}}{14.4 \mathrm{~V}}=0.2 \mathrm{~A}$ of current
Select a transistor with a current gain, β of at least 150 .

Calculate the needed base drive current, assume $V_{B E}=0.7 \mathrm{~V}$
1/O Pin
$i_{B}=\left(\frac{i_{c}}{\beta}\right)=1.3 \frac{200 \mathrm{~mA}}{150}=1.733 \mathrm{~mA}$
(Note: This will be a near maximum load for the R-pi.)
The voltage drop across the resistor will be $V_{\text {OHmin }}-v_{B}=3.0-0.7=2.3 \mathrm{~V}$
$R=\frac{2.3 \mathrm{~V}}{1.733 \mathrm{~mA}}=1.3 \mathrm{k} \Omega$
(black, orange, red, gold)

Controlling inductive loads-any power level

Inductive loads include motor and relays-anything with a coil of wire in it.
For an inductor $v=L \frac{d i}{d t}$ or $i=\frac{1}{L} \int v d t+K$

The current can coast.
If the voltage is zero that does not assure or even imply that the current is zero. To stop current you need an opposing voltage.
This leads to a phenomenon called "flyback."
When you switch an inductor off rapidly, a flyback voltage is produced which will destroy the transistor (or any switching device), unless a flyback diode is added across the inductive load as shown. The diode allows the current to coast down to zero over some time and therefore limits the flyback voltage to a trivial amount.

M ore detailson inductive loads, current coasting, and flyback voltage.
An inductive load contains a coil of wire.
If the load is designed for a DC power supply, the load is primarily resistive, R. Often R is substantial because the load is made of many turns of very fine wire (a long, thin wire). But, this wire is intended to make a magnetic field, so there is also prominent inductance, L.

Consider switchingthe inductive load on.
Node voltage v_{x} (with respect to ground) is instantly changed from $V_{C C}$ to ground by the switching device.
Voltage $V_{C C}$ is applied to the load and current begins to flow.

$$
i(t)=\frac{V_{C C}}{R}\left(1-e^{-\left(\frac{R}{L}\right) t}\right)
$$

The time constant, $\tau=L / R$ is usually milliseconds, or for large coils, up to a few seconds.

When the magnetic field builds up to a certain point (typically in milliseconds), something useful starts happening, e.g. a motor starts running, a relay pulls in and makes contact, etc.

M ore details on inductive loads, current coasting, and flyback voltage.
Now consider turning the load off.
The current was $i=V_{C C} / R$ but. . .
now it becomes zero quickly as the Switch opens
Suppose the switch successfully stops the current instantaneously.
For the inductor, $v=L \frac{d i}{d t}$ and $\frac{d i}{d t}$ was infinite and negative.
Thus an infinite negative voltage pulse, v is created.
KVL around the loop gives the voltage across the switch contacts.

$$
\begin{gathered}
-V_{C C}+v+v_{x}=0 \\
-V_{C C}+(-\infty)+v_{x}=0 \\
v_{x}=\infty
\end{gathered}
$$

Folks, this ain't gonna happen!

Instead, the voltage will build until an arc forms across the switch contacts.
The arc has practically zero resistance. The current just keeps going!
Don't believe it? Watch these videos of switches and large loads.
https://www.youtube.com/watch? v=PaAqklrFKgM

https://www.youtube.com/watch?v=Zez2r1RPpWY

